Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Phys Rev Lett ; 127(3): 035002, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34328772

RESUMO

The charge states of ions in dense plasmas fluctuate due to collisional ionization and recombination. Here, we show how, by modifying the ion interaction potential, these fluctuations can mediate energy exchange between the plasma electrons and ions. Moreover, we develop a theory for this novel electron-ion energy transfer mechanism. Calculations using a random walk approach for the fluctuations suggest that the energy exchange rate from charge state fluctuations could be comparable to direct electron-ion collisions. This mechanism is, however, predicted to exhibit a complex dependence on the temperature and ionization state of the plasma, which could contribute to our understanding of significant variation in experimental measurements of equilibration times.

2.
Phys Rev Lett ; 126(8): 085001, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709744

RESUMO

In a plasma of sufficient size and density, photons emitted within the system have a probability of being reabsorbed and reemitted multiple times-a phenomenon known in astrophysics as resonant scattering. This effect alters the ratio of optically thick to optically thin lines, depending on the plasma geometry and viewing angle, and has significant implications for the spectra observed in a number of astrophysical scenarios, but has not previously been studied in a controlled laboratory plasma. We demonstrate the effect in the x-ray spectra emitted by cylindrical plasmas generated by high power laser irradiation, and the results confirm the geometrical interpretation of resonant scattering.

3.
Philos Trans A Math Phys Eng Sci ; 378(2184): 20200014, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33040653

RESUMO

Considerable progress towards the achievement of thermonuclear burn using inertial confinement fusion has been achieved at the National Ignition Facility in the USA in the last few years. Other drivers, such as the Z-machine at Sandia, are also making progress towards this goal. A burning thermonuclear plasma would provide a unique and extreme plasma environment; in this paper we discuss (a) different theoretical challenges involved in modelling burning plasmas not currently considered, (b) the use of novel machine learning-based methods that might help large facilities reach ignition, and (c) the connections that a burning plasma might have to fundamental physics, including quantum electrodynamics studies, and the replication and exploration of conditions that last occurred in the first few minutes after the Big Bang. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 1)'.

4.
Phys Rev Lett ; 125(14): 145002, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064505

RESUMO

Calculations of the opacity of hot, dense matter require models for plasma line broadening. However, the most general theories are too complex to calculate directly and some approximation is inevitably required. The most widely used approaches focus on the line center, where a Lorentzian shape is obtained. Here, we demonstrate that in the opposite limit, far from the line center, the opacity can be expressed in terms of second-order transitions, such as electron-photon and two-photon processes. We suggest that this insight could form the basis for a new approach to improve calculations of opacity in hot, dense matter. Preliminary calculations suggest that this approach could yield increased opacity away from absorption lines.

5.
Phys Rev Lett ; 123(25): 254801, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31922780

RESUMO

Single-shot absorption measurements have been performed using the multi-keV x rays generated by a laser-wakefield accelerator. A 200 TW laser was used to drive a laser-wakefield accelerator in a mode which produced broadband electron beams with a maximum energy above 1 GeV and a broad divergence of ≈15 mrad FWHM. Betatron oscillations of these electrons generated 1.2±0.2×10^{6} photons/eV in the 5 keV region, with a signal-to-noise ratio of approximately 300∶1. This was sufficient to allow high-resolution x-ray absorption near-edge structure measurements at the K edge of a titanium sample in a single shot. We demonstrate that this source is capable of single-shot, simultaneous measurements of both the electron and ion distributions in matter heated to eV temperatures by comparison with density functional theory simulations. The unique combination of a high-flux, large bandwidth, few femtosecond duration x-ray pulse synchronized to a high-power laser will enable key advances in the study of ultrafast energetic processes such as electron-ion equilibration.

6.
Phys Rev E ; 97(6-1): 063203, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011508

RESUMO

In this paper we report the experimental implementation of a theoretically proposed technique for creating a photoionized plasma in the laboratory using x-ray line radiation. Using a Sn laser plasma to irradiate an Ar gas target, the photoionization parameter, ξ=4πF/N_{e}, reached values of order 50ergcms^{-1}, where F is the radiation flux in ergcm^{-2}s^{-1}. The significance of this is that this technique allows us to mimic effective spectral radiation temperatures in excess of 1 keV. We show that our plasma starts to be collisionally dominated before the peak of the x-ray drive. However, the technique is extendable to higher-energy laser systems to create plasmas with parameters relevant to benchmarking codes used to model astrophysical objects.

7.
Phys Rev Lett ; 118(22): 222501, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28621970

RESUMO

Fast-neutron-induced fission of ^{238}U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ-ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ-γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fission fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission. This has consequences for understanding and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei, for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the reactor antineutrino anomaly.

8.
Phys Rev E ; 93(5): 053208, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27300996

RESUMO

In this work, a self-consistent transport theory for a relativistic plasma is developed. Using the notation of Braginskii [S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 174], we provide semianalytical forms of the electrical resistivity, thermoelectric, and thermal conductivity tensors for a Lorentzian plasma in a magnetic field. This treatment is then generalized to plasmas with arbitrary atomic number by numerically solving the linearized Boltzmann equation. The corresponding transport coefficients are fitted by rational functions in order to make them suitable for use in radiation-hydrodynamic simulations and transport calculations. Within the confines of linear transport theory and on the assumption that the plasma is optically thin, our results are valid for temperatures up to a few MeV. By contrast, classical transport theory begins to incur significant errors above k_{B}T∼10 keV, e.g., the parallel thermal conductivity is suppressed by 15% at k_{B}T=20 keV due to relativistic effects.

9.
Phys Rev Lett ; 116(15): 159502, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27127990
10.
Nat Commun ; 6: 8905, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26563440

RESUMO

High-intensity lasers can be used to generate shockwaves, which have found applications in nuclear fusion, proton imaging, cancer therapies and materials science. Collisionless electrostatic shocks are one type of shockwave widely studied for applications involving ion acceleration. Here we show a novel mechanism for collisionless electrostatic shocks to heat small amounts of solid density matter to temperatures of ∼keV in tens of femtoseconds. Unusually, electrons play no direct role in the heating and it is the ions that determine the heating rate. Ions are heated due to an interplay between the electric field of the shock, the local density increase during the passage of the shock and collisions between different species of ion. In simulations, these factors combine to produce rapid, localized heating of the lighter ion species. Although the heated volume is modest, this would be one of the fastest heating mechanisms discovered if demonstrated in the laboratory.

11.
Artigo em Inglês | MEDLINE | ID: mdl-25353904

RESUMO

The work of Spitzer on dynamical friction in a plasma [L. Spitzer, Jr., Physics of Fully Ionized Gases, 2nd ed. (Wiley, New York, 1962), Chap. 5] is extended to relativistic systems. We derive the force of dynamical friction, diffusion tensor, and test particle relaxation rates for a Maxwellian background in the same form as Trubnikov [B. A. Trubnikov, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 105], enabling high-temperature laboratory and astrophysical plasmas to be modeled in a consistent manner.

13.
Phys Rev Lett ; 112(24): 245002, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24996093

RESUMO

Large-angle Coulomb collisions affect the rates of energy and momentum exchange in a plasma, and it is expected that their effects will be important in many plasmas of current research interest, including in inertial confinement fusion. Their inclusion is a long-standing problem, and the first fully self-consistent method for calculating their effects is presented. This method is applied to "burn" in the hot fuel in inertial confinement fusion capsules and finds that the yield increases due to an increase in the rate of temperature equilibration between electrons and ions which is not predicted by small-angle collision theories. The equilibration rate increases are 50%-100% for number densities of 10(30) m(-3) and temperatures around 1 keV.

14.
Phys Rev Lett ; 113(25): 255001, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25554889

RESUMO

We investigate the mechanism by which relativistic electron bunches created at the surface of a target irradiated by a very short and intense laser pulse transfer energy to the deeper parts of the target. In existing theories, the dominant heating mechanism is that of resistive heating by the neutralizing return current. In addition to this, we find that large amplitude plasma waves are induced in the plasma in the wake of relativistic electron bunches. The subsequent collisional damping of these waves represents a source of heating that can exceed the resistive heating rate. As a result, solid targets heat significantly faster than has been previously considered. A new hybrid model, capable of reproducing these results, is described.

15.
Rev Sci Instrum ; 84(8): 083505, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24007063

RESUMO

A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically intense laser-solid interactions is described. The Monte Carlo techniques used to extract the fast electron spectrum and laser energy absorbed into forward-going fast electrons are detailed. A relativistically intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data were interpreted using the 3-spatial-dimension Monte Carlo code MCNPX [D. Pelowitz, MCNPX User's Manual Version 2.6.0, Los Alamos National Laboratory, 2008], and the fast electron temperature found to be 125 keV.

16.
Phys Rev Lett ; 111(24): 242504, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483649

RESUMO

The γ-ray strength function of 56Fe has been measured from proton-γ coincidences for excitation energies up to ≈11 MeV. The low-energy enhancement in the γ-ray strength function, which was first discovered in the (3He,αγ)56Fe reaction, is confirmed with the (p,p'γ)56Fe experiment reported here. Angular distributions of the γ rays give for the first time evidence that the enhancement is dominated by dipole transitions.

17.
Phys Rev Lett ; 109(1): 015001, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-23031109

RESUMO

This Letter describes the first experimental demonstration of the guiding of a relativistic electron beam in a solid target using two colinear, relativistically intense, picosecond laser pulses. The first pulse creates a magnetic field that guides the higher-current, fast-electron beam generated by the second pulse. The effects of intensity ratio, delay, total energy, and intrinsic prepulse are examined. Thermal and Kα imaging show reduced emission size, increased peak emission, and increased total emission at delays of 4-6 ps, an intensity ratio of 10∶1 (second:first) and a total energy of 186 J. In comparison to a single, high-contrast shot, the inferred fast-electron divergence is reduced by 2.7 times, while the fast-electron current density is increased by a factor of 1.8. The enhancements are reproduced with modeling and are shown to be due to the self-generation of magnetic fields. Such a scheme could be of considerable benefit to fast-ignition inertial fusion.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(2 Pt 2): 026406, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23005868

RESUMO

The accurate characterization of thermal electron transport and the determination of heating by suprathermal electrons in laser driven solid targets are both issues of great importance to the current experiments being performed at the National Ignition Facility, which aims to achieve thermonuclear fusion ignition using lasers. Ionization, induced by electronic heat conduction, can cause the opacity of a material to drop significantly once bound-free photoionization is no longer energetically possible. We show that this drop in opacity enables measurements of the transmission of extreme ultraviolet (EUV) laser pulses at 13.9 nm to act as a signature of the heating of thin (50 nm) iron layers with a 50-nm thick parylene-N (CH) overlay irradiated by 35-fs pulses at irradiance 3×10(16) Wcm(-2). Comparing EUV transmission measurements at different times after irradiation to fluid code simulations shows that the target is instantaneously heated by hot electrons (with approximately 10% of the laser energy), followed by thermal conduction with a flux limiter of ≈0.05.

19.
Sci Rep ; 2: 491, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768381

RESUMO

A common misperception of quantum gravity is that it requires accessing energies up to the Planck scale of 10¹9 GeV, which is unattainable from any conceivable particle collider. Thanks to the development of ultra-high intensity optical lasers, very large accelerations can be now the reached at their focal spot, thus mimicking, by virtue of the equivalence principle, a non Minkowski space-time. Here we derive a semiclassical extension of quantum mechanics that applies to different metrics, but under the assumption of weak gravity. We use our results to show that Thomson scattering of photons by uniformly accelerated electrons predicts an observable effect depending upon acceleration and local metric. In the laboratory frame, a broadening of the Thomson scattered x ray light from a fourth generation light source can be used to detect the modification of the metric associated to electrons accelerated in the field of a high power optical laser.

20.
Horm Res Paediatr ; 73(5): 328-34, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20389102

RESUMO

BACKGROUND/AIMS: Mutations in the acid-labile subunit (ALS) gene (IGFALS) have been associated with circulating insulin-like growth factor I (IGF-I) deficiency and short stature. Whether severe pubertal delay is also part of the phenotype remains controversial due to the small number of cases reported. We report 2 children with a history of growth failure due to novel IGFALS mutations. METHODS: The growth hormone receptor gene (GHR) and IGFALS were analyzed by direct sequencing. Ternary complex formation was studied by size exclusion chromatography. RESULTS: Two boys of 13.3 and 10.6 years, with pubertal stages 2 and 1, had mild short stature (-3.2 and -2.8 SDS, respectively) and a biochemical profile suggestive of growth hormone resistance. No defects were identified in the GHR. Patient 1 was homozygous for the IGFALS missense mutation P73L. Patient 2 was a compound heterozygote for the missense mutation L134Q and a novel GGC to AG substitution at position 546-548 (546-548delGGCinsAG). The latter causes a frameshift and the appearance of a premature stop codon. Size exclusion chromatography showed no peaks corresponding to ternary and binary complexes in either patient. CONCLUSION: Screening of the IGFALS is important in children with short stature associated with low serum IGF-I, IGFBP-3 and ALS.


Assuntos
Proteínas de Transporte/genética , Glicoproteínas/deficiência , Glicoproteínas/genética , Transtornos do Crescimento/genética , Adolescente , Criança , Consanguinidade , Mutação da Fase de Leitura , Heterozigoto , Homozigoto , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Masculino , Mutação de Sentido Incorreto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...